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Abstract: Electricity demand forecasting is a critical task for efficient, reliable and economical operation of the power grid, which
is one of the most essential building blocks of smart cities. Accurate forecasting allows grid operators to properly maintain the
balance of supply and demand as well as to optimize operational cost for generation and transmission. This article proposes a
novel neural network architecture PowerNet which can incorporate multiple heterogeneous features such as historical energy
consumption data, weather data and calendar information for the demand forecasting task. Using real-world smart meter
dataset, we conduct an extensive evaluation to show the advantages of PowerNet over recently-proposed machine learning
methods such as Gradient Boosting Tree (GBT), Support Vector Regression (SVR), Random Forest (RF) and Gated Recurrent
Unit (GRU). PowerNet demonstrates notable performance in reducing both the median and worst-case prediction errors when
forecasting demands of individual residential households. We further provide empirical results concerning the two operational
considerations that are crucial when using PowerNet in practice: the time horizon the model can predict with a decent accuracy
and the frequency of training the model to retain its modeling capability. Finally, we briefly discuss a multi-layer anomaly/
electricity-theft detection approach based on PowerNet demand forecasting.

1 Introduction
The smart grid is an integral part of modern smart cities. It is the
enhanced electrical grid that takes advantage of sensing and
information communication technologies to improve the efficiency,
reliability and security of traditional power grid. Compared to the
traditional power grid, entities in the smart grid are able to obtain
timely power grid status of many kinds. Smart metering, which is a
major improvement brought by the smart grid, facilitates real-time
metering and reporting of electricity consumption data. One
resulting benefit is that the accurate, fine-grained power demand
forecasting can be carried out based on such meter measurement.
Such forecasting based on the historical data facilitates power
generation scheduling and power dispatching in a future period.

Demand forecasting is important in demand management for
both power companies and electricity customers [1]. Power
companies can allocate proper resources to balance the supply and
demand based on the demand forecasting results. They can also
adjust the demand response strategy such as dynamic pricing to
shape the load so as to avoid the infrastructure capacity strain or to
avoid additional cost for starting plants operating near to their
peak. Furthermore, the utilities can detect abnormal meter
measurements, caused either by unexpected meter failures or
deliberate meter manipulation, by identifying those measurements
that do not conform to the predicted/expected values. For the
electricity customers, power demand forecasting provides them
with their expected power consumption and cost in a future period
under dynamic pricing strategy, so that they can adjust their usage
schedule accordingly to achieve a lower cost. Therefore, the
importance of accurate demand forecasting for effective and
efficient management of the smart grid in a smart urban set up is
paramount.

Although demand forecasting has been widely studied for years,
attaining high accuracy in forecasting is a challenge as power
demand is dependent upon various factors which may have
discriminative capability in influencing the demand. With this
challenge in mind, we propose a novel forecasting neural network

architecture named as PowerNet. We take into account a set of
features from three heterogeneous dimensions – the historical
consumption data, the weather information and the calendar
information, all of which are considered influential on electricity
customers’ power consumption patterns. In each dimension, a set
of features is developed. Thereafter, we introduce our model
PowerNet which is capable of incorporating all the designed
features. The key property of PowerNet is the ability to model both
sequential data (i.e. historical consumption data) and non-
sequential data (i.e. weather and calendar information) in a unified
manner. The underpinning idea lies in the use of recurrent neural
network (RNN) for encoding dependencies implied in sequential
data and multilayer perceptron (MLP) network for capturing
correlations between non-sequential features and predictions. In
order to evaluate the effectiveness of our model, we compare
PowerNet with four state-of-the-art demand forecasting techniques
which are gradient boosting tree (GBT) [2], support vector
regression (SVR) [3], random forest (RF) [4, 5] and gated recurrent
unit (GRU) [6]. We show that the performance of our proposed
PowerNet model is competitive in the case studies of predicting
demands of smart apartments in a smart city. Furthermore, we
tackle two crucial questions that need to be answered when
operating PowerNet in practice: how far in the future the model can
forecast with a reasonable accuracy and how often should we train
the forecasting model to retain its modelling capability? Lastly, we
discuss a multilayer data-driven anomaly detection approach based
on PowerNet.

The contributions of this work are summarised below:

• We propose PowerNet, a novel power demand forecasting
neural network that captures heterogeneous features in a unified
way.

• We compare PowerNet with four representative models adopted
in recent research works, i.e. GBT, SVR, RF and GRU. The
results show that PowerNet can reduce and bound the error over
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these competitors, even in the prediction of individual apartment
energy demand.

• We further evaluate the forecasting model under different
forecasting duration and re-training frequency using publicly
available datasets.

• We provide brief discussion on potential application of
PowerNet for anomaly/electricity-theft detection.

The rest of this paper is organised as follows. In Section 2, we
discuss the features to be incorporated into power demand
forecasting. Section 3 elaborates the design of PowerNet. We
discuss evaluation results, including comparison with state-of-the-
art techniques and empirical results to answer the aforementioned
questions for practical operation in Section 4, followed by a brief
discussion about the application for anomaly detection in Section
5. Related work is discussed in Section 6 and we conclude the
paper in Section 7.

2 Feature design and dataset
Power consumption patterns are affected by a variety of factors.
Thus demand forecasting mechanism should incorporate such
factors as features, in addition to historical energy consumption
data. We focus on weather and calendar data. Below, we elaborate
these features and the dataset we have utilised in this paper.

2.1 Energy usage dataset

We use the publicly available dataset provided by the University of
Massachusetts [7]. It includes two parts, the apartment dataset and
the weather dataset.

The apartment dataset contains consumption data for 114
single-family apartments located in Western Massachusetts for the
period of year 2014 to 2016. The dataset records the demand of
every single apartment in fixed temporal frequency. Given the
metering interval is fixed, power values are able to represent the
power consumption. The metering frequency is once every 15 min
for the year 2014 and 2015 (till December 15), and once every 1 
min for the year 2016. The data is in .csv files, each of which
records the power consumption details for one apartment within 1
year with apartment ID as its file name.

Together with the power consumption data, hourly weather
information during the record period from 2014 to 2016 is also
available. Fourteen meteorological attributes are included in the
weather dataset, including weather summary, temperature,
humidity, cloud cover, wind speed, wind bearing, visibility,
pressure and so on. In our experiment, we use the data of 2016
because of its finer granularity in recording frequency as well as
the latest consumption pattern it may reflect.

2.2 Feature design

The features used by the existing forecasting models fall into three
categories in terms of privacy issue, i.e. publicly available
information (e.g. weather information and calendar information),
household private information (e.g. demography) and quasi-private
information (e.g. historical consumption data acquired by power
utility companies). The quasi-private information here is defined as
privacy-related but not public available data. For example, the
historical electricity consumption data can be used to infer certain
private household characteristics [8, 9], but it is only available to
the authorised personnel within power utility companies instead of
to the public.

Although it is natural that private household data would have a
direct influence on the household power demand, e.g. more people
living in the house leads to more power demand, in this work, we
limit the predictors to non-private information due to the following
reasons. First of all, we would like to involve no household-
specific data in forecasting procedure other than power meter
readings due to user privacy concern. Secondly, some utility
companies may have access to household private data such as
locations. However, it is not common for utility companies to have
other private information, for example, the demography
information. Thirdly, the forecasting model independent of the

house specific data can be applied to larger scales easily, such as
building level or area level.

We develop three categories of features from the dataset, i.e.
historical consumption data, weather information and calendar
information. Historical consumption data is the actual observation
of the prediction target, which directly reflects the consumption
pattern. Power utility companies can get this data by reading power
meters. Weather information has an influence on the power demand
since some appliances are sensitive towards weather conditions.
For example, the use of air conditioner depends on the temperature
and humidity. Calendar information, such as weekday or weekend,
shapes the user consumption behaviour in terms of different living/
working styles. It indicates the consumption pattern according to
the calendar feature and cycle.

Our features based on the above three categories are
summarised in Table 1. There are nd + 18 features in total, among
which, nd features are from historical consumption data, 13 are
from weather information and 5 are designed from calendar
information. The historical data involves a large number of data
points. Therefore, it is necessary to find out nd historical data points
that are most correlated with the target forecasting value. To solve
this problem, we use the autocorrelation function, which can
quantify the correlation between data points in the same time series
of various lags, to find out the most related number of lag values as
nd.

3 PowerNet
3.1 Overview

Our approach to forecasting power demand is by modelling the
relationship between the target power demand and a set of
indicative features. Fig. 1 illustrates the high-level process
sketching our approach. First, we extract several suites of features
discussed in Section 2.2 from the datasets. Then, we train the
proposed PowerNet model by feeding the feature vectors as input,
supervised by the signals from the power demand ground-truth.
Fig. 2 shows the architecture of PowerNet, which consists of two
major components. The left component (in blue) is designed to
model the historical consumption time series data. The idea is to

Table 1 Features for the power demand forecasting task
Category Detail
historical
consumption
data

consumption data in past nd time slots

weather
information

weather summary, weather representation icon
name, temperature, apparent temperature, cloud

cover, precipitation probability, precipitation
intensity, visibility, wind speed, wind bearing,

humidity, pressure, dew point
calendar
information

day of the month, day of the week, hour of the
day, period of the day (i.e. daytime and night

time), is weekend (Boolean value)
 

Fig. 1  Approach overview
 

2 IET Smart Cities
This is an open access article published by the IET under the Creative Commons Attribution-NoDerivs License

(http://creativecommons.org/licenses/by-nd/3.0/)



capture the temporal effects of power consumption as future
consumption may be correlated to consumption in the recent past.
Here, we utilise the long short-term memory (LSTM) [10] network
to encode the correlations between consecutive power demands
across time. The right component (in orange) is a MLP [11] model
for modelling the non-linearity between the weather and calendar
features, and the target power demand. Finally, we aggregate the
outputs of these two components and make the final prediction of
the target power demand via a prediction layer. In the following,
we dissect each component of PowerNet.

3.2 Input layer

To process the sequential historical energy consumption data and
the non-sequential weather and calendar data, the input layer of
PowerNet consists of two components for each of the data types.
The first is a sequence of historical power consumption values
denoted by E = {e1, …, et, …, eE } where E  is the cardinality of E
(i.e. the number of meter readings), with each value et ∈ ℝ+ is a
real-valued non-negative power meter reading at time t. The
second is a vector of weather and calendar features, denoted by
F = [Fw; Fc], where Fw = { f 1

w, …, f w
w }, Fc = { f 1

c, …, f c
c }, [; ]

represents vector concatenation, and w  and c  are the numbers of
the weather and calendar features, respectively, already introduced
in Section 2.2.

3.3 Power consumption encoding layer

The utility of this layer is to encode the power consumption time
series data by using an LSTM network, a widely-used variant of
RNN that can learn long-term dependencies. Different from
traditional neural networks that can only take historical energy
consumption readings as input, LSTM allows unlimited history
information to persist with an internal loop mechanism while
avoiding the gradient vanishing problem [12]. Therefore, it has
been successfully applied to various areas, e.g. continual prediction
[13], language modelling [14] and translation [15]. The core of
LSTM is a memory cell that can maintain information across time
via gating mechanism. The LSTM cell maintains a cell status s
based on both current input et and previous output ht − 1 (i.e. the
recurrent input) and then decides what information to be dropped
and what to be passed on (i.e. ht). We do not detail the gating
mechanisms here which can be found in previous literature [10].
We use LSTM( ⋅ ) to represent the cell function.

Specifically, we apply a stacked LSTM to every time step of the
power consumption time series data E

[h1 s1] = LSTMstack(e1, h0, s0)
⋯

[ht st] = LSTMstack(et, ht − 1, st − 1)
…

[hE sE ] = LSTMstack(eE , hE − 1, sE − 1)

(1)

where h and s are the hidden and cell states of LSTM, respectively.
Then, the output of LSTMstack at the last time step hE ∈ ℝn is used
as a final encoding of the entire power consumption series, where n
is the LSTM memory size.

3.4 Weather and calendar fusion layer

Here we deal with the input from the weather and calendar feature
vectors Fw and Fc. Specifically, we jointly model these two feature
vectors through an MLP network as follows:

hwc = ReLU(W2ReLU(W1[Fw; Fc] + b1) + b2) (2)

where W1 ∈ ℝd1 × m, W2 ∈ ℝd2 × d1, b1 ∈ ℝd1, b2 ∈ ℝd2 are trainable
weights, m = Fw + Fc , d1 and d2 are the sizes of hidden units,
[; ] denotes vector concatenation by column and hwc ∈ ℝd2 is the
output encoding of this MLP. ReLU [16] is used as the activation
function for introducing non-linearity.

3.5 Aggregation and prediction layer

Having both power consumption history and weather and calendar
information encoded, we finally aggregate the obtained encoding
representations and make the final power demand predictions.
Concretely, we concatenate the two encoding representations hE
and hwc and feed the result into a final feed-forward regression
network

y^ = W4ReLU(W3[hE ; hwc] + b3) + b4 (3)

where W3 ∈ ℝd3 × ( E + d2), b3 ∈ ℝd3, W4 ∈ ℝ1 × d3, b4 ∈ ℝ are trainable
parameters and d3 is the hidden size of the inner layer. Note that
both W4 and b4 of the outer layer have only one hidden unit for
producing the final predicted reading value. y^ ∈ ℝ is the predicted
power consumption reading value.

3.6 Optimisation

For model training, we use mean squared error loss ((4)) with
dropout regularisation [17]

L(W∗, b∗) = 1
N ∑

i = 1

N
(y^i − yi)2 (4)

where y^i and yi are the ith predicted and actual energy consumption
values, respectively, N is the number of training examples, W∗, b∗
are all the aforementioned trainable parameters in our model. In
addition, all trainable parameters in the fully-connected layers are
regularised by L2 norm. Finally, Adam (Adaptive Moment
Estimation) [18] is used as the optimiser for stochastic gradient
descent.

Fig. 2  Architecture of PowerNet
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4 Evaluation
This section first compares PowerNet with several representative
models used in recent works in terms of two quantitative metrics.
Then, we evaluate PowerNet under different settings, including the
forecasting frequencies, forecasting periods and the newness of
PowerNet.

4.1 Preparation

4.1.1 Baseline: We select four prediction methods utilised in
recent works as our baseline models in this work: GBT [2], SVR
[3], RF [4, 5] and GRU [6]. For a fair comparison, we apply these
models to the same public dataset as described in Section 2.1.

GBT is adopted by Bansal et al. [2] to forecast power
consumption. GBT is a supervised learning predictive model which
can be used for classification and regression purposes [19, 20].
GBT builds the model, i.e. a series of trees, in a step-wise manner.
In each step, it adds one tree and maintains the existing trees
unchanged. The added tree is the optimal tree by minimising a
predefined loss function. In summary, the prediction model of GBT
is formed with the ensemble of weaker prediction models
following the core idea of the gradient.

Support vector machine (SVM) is used in the work by Yu et al.
[3] to forecast power usage. SVM is a supervised machine learning
algorithm for solving both classification and regression problems
[21]. SVM performs classification by seeking the hyperplane that
differentiates the two classes to the largest extent, i.e. maximising
the margin. Similarly, regression using SVM is called SVR [22],
and it is used to seek and optimise the generation bounds by
minimising the predefined error function. The regression can be
conducted in both linear and non-linear manner. For the non-linear
SVR, it needs to transform the data into a higher dimensional space
so that it is possible to perform the linear separation.

RF, an ensemble machine learning method consisting of many
decision trees (DTs), has been widely used for classification and
regression problems. A DT, also termed as classification and
regression tree (CART), has many nodes where each node stores a
test function to apply on incoming data [4]. In RF, the bagging
principle is incorporated in which observations of a certain sample
size (called bootstrap samples) are randomly selected from the
training set to fit a regression tree. While single CART is sensitive
to data noise, the bootstrap aggregation is immune to it to a large
extent. RF shows competitive performance in time series
forecasting as observed in recent studies on load demand
forecasting [4, 5].

GRU is based on the framework of RNN. Conventional RNN
network uses gradient descent method in back-propagation for
learning. However, vanishing gradient in dealing with long time
sequence is the common problem encountered in RNN. The
vanishing gradient is countered by adding control gates for

information buffer in both LSTM and GRU. In place of the hidden
units in RNN, LSTM network uses LSTM cells consisting of the
input gate, output gate and forget gate. GRU is simpler compared
to LSTM as it combines the input gate and forget gate with a single
gate called update gate. Wang et al. [6] performed short-term load
forecasting using GRU and including factors such as weather,
temperature, day and so on.

4.1.2 Evaluation metric: We introduce two metrics to evaluate the
accuracy of the forecasting model, i.e. mean square error (MSE)
and mean absolute percentage error (MAPE). The smaller the error
is, the more accurate the model prediction is.

MSE measures the average of the squared errors/deviations as
directed by (5). Nv is the total number of forecasting values, At
denotes the actual value at time t and Ft denotes the forecasting
value at time t. A smaller MSE value signifies better prediction

MSE = 1
Nv

∑
t = 1

Nv

(At − Ft)2 (5)

Different from MSE, MAPE measures the error proportion to the
absolute value. It expresses the error as a percentage and can be
calculated using the following equation:

MAPE = 100%
Nv

∑
t = 1

Nv At − Ft
At

(6)

MSE is more useful in comparison among identical test data as it is
the absolute square error value, which depends on the scale of
actual values. Compared to MSE, MAPE is more indicative in the
comparison between different data since it represents the error in a
percentage manner.

4.2 Comparison with baselines

In this sub-section, we present empirical results to demonstrate the
advantage of PowerNet over the four baseline models. Our
PowerNet uses a two-layered LSTM network. The cell memory
size for every layer is tuned from the set {64, 128, 256, 512} using
grid search. Early stopping is employed when there is no further
improvement on the validation set.

Similarly, the parameters for baseline models are also
automatically tuned in the same way. For GBT, three parameters
are involved, i.e. the number of boosting stages to perform
n_estimators, maximum depth of the individual regression
estimators max_depth and learning rate learning_rate. Its
parameter grid is constructed using n_estimators: {50, 100, 150,
200, 250, 300, 350, 400, 450, 500}, max_depth: {1, 2, 3, 4, 5} and
learning_rate: {0.001, 0.01, 0.1, 1}. For SVR, three parameters C,
kernel and gamma are involved. We construct the parameter grid
using C: {0.001, 0.01, 0.1, 1}, kernel: {rbf, linear, poly, sigmoid}
and hence gamma is automatically set to the corresponding kernel
coefficient or the reciprocal of the number of features. For RF, we
set the number of trees in the forest n_trees, maximum depth of the
tree max_depth and minimum number of samples for a leaf,
min_samples_leaf. Like other algorithms, parameters are
automatically tuned from the search range n_trees: {50, 100, 150,
200, 250, 300, 350, 400, 450, 500}, max_depth: {80, 90, 100, 110}
and min_samples_leaf: {3, 4, 5}. GRU is similar to LSTM
network. The cell memory size for every layer is tuned from the set
{32, 64, 96, 128, 256} using grid search.

We use the power consumption data of past 26 days, i.e. 624 h
as the training set to train all the models and the next 48 h data, i.e.
day 27-28 as the validation set. Finally, we make predictions on the
test data of day 29-30. Due to space limitation, we demonstrate the
results of our model and the four baselines on the data of only few
randomly chosen apartments from different seasons (No. 69 in
Spring, No. 91 in Summer and No. 39 in Autumn as seen in
Table 2). The plots of predicted consumption patterns against the
real consumption for the first two apartments are found in Figs. 3
and 4. From the figures we can see that PowerNet model captures

Table 2 MAPE and MSE on prediction of individual
apartment consumption
Apartment (season) Model MAPE, % MSE
69 (spring) PowerNet 7.98 0.017

SVR 8.69 0.018
GBT 8.84 0.019
RF 8.86 0.019

GRU 9.80 0.026
91 (summer) PowerNet 13.82 0.014

SVR 106.75 0.016
GBT 22.41 0.013
RF 21.38 0.013

GRU 21.00 0.015
39 (autumn) PowerNet 16.73 0.213

SVR 19.62 0.408
GBT 19.85 0.368
RF 22.83 0.449

GRU 22.83 0.449
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trends well and offers accuracy improvement in MAPE for the
selected datasets by 8, 34 and 14%, respectively, compared to the
second-best model.

We further conduct experiments with more apartment data to
compare the accuracy in terms of distribution of MAPE. We use
summer season consumption data for randomly picked 50
apartments and perform the same experiment for each apartment to
calculate MAPE. The result is summarised in Fig. 5. As can be
seen, overall the MAPE of PowerNet is lower than the other
competitors. In general, as predicting demand of individual
household level is challenging, MAPE is often high. However,
MAPE of PowerNet is still bounded below 100% and the median is
below 50%.

Lastly, we conduct experiments with aggregated energy
consumption data. We evaluate accuracy with 2 different
aggregation levels, 16 apartments and 114 apartments (i.e. all
apartments available in the dataset). For each case, we predict for
48 h as done in the experiments for individual apartments, and
calculate MAPE and MSE. As seen in Table 3, when the
aggregation level is low, PowerNet has advantage over the others. 
The corresponding plot is found in Fig. 6. On the other hand, when
consumption values of all apartments are aggregated, all prediction
models except GRU perform reasonably well. Based on these
results as well as the results of individual apartment experiments
discussed earlier, PowerNet exhibits competitive performance
along with mostly better accuracy over the other models evaluated
in our set-up. However, we admit that our results may have bias
caused by the specific dataset we use in this study and evaluation
with other datasets for generality will be part of our future work.

4.3 Forecasting period of PowerNet

In general, the accuracy of power demand forecasting deteriorates
as the prediction horizon moves farther. Therefore, it is crucial for
grid operators to know how much ahead in time the PowerNet can
predict the demand without significant drop in accuracy. In this
section, we provide empirical results on forecasting accuracy
against different forecasting periods using the real-world electricity

consumption data. By doing so, grid operators can evaluate
whether PowerNet is suitable for certain tasks that require different
lengths of prediction period, such as bidding in the day-ahead
electricity market and day-ahead electricity scheduling which
require the one day-ahead forecasting results [23].

Some features for predicting the power demand in the far future
may not be available at the time of prediction. For example, the
power consumption of the previous 1 h is an important feature to
predict the power demand for the next hour. If we predict beyond
1 h at once, we would not know the actual consumption value for
every ‘previous’ hour. Therefore, the prediction in the far future
relies on the predicted values prior to that. The fact has an inherent
risk of error accumulation.

In this experiment, we predict the power demand for the future
30 days at once based on current historical data. We train the model
on the aggregated historical data in July and predict the power
demand for the following 30 days. The forecasting results are
shown in Fig. 7 in red. We can see that the red line follows the
original peaks and valleys well at the beginning. However, starting

Fig. 3  Forecasting results of apartment 69 (spring)
 

Fig. 4  Forecasting results of apartment 91 (summer)
 

Fig. 5  Comparison in distribution of MAPE
 

Table 3 MAPE and MSE on prediction of aggregated
consumption
No. of apartment Model MAPE, % MSE
16 PowerNet 13.98 0.024

SVR 15.61 0.034
GBT 14.18 0.028
RF 15.03 0.032

GRU 16.03 0.036
114 PowerNet 10.00 0.012

SVR 10.94 0.014
GBT 8.48 0.009
RF 9.71 0.012

GRU 15.75 0.036
 

Fig. 6  Forecasting results of aggregated consumption of 16 apartments
(spring)
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from a point around 550 on the x-axis, the red line totally loses
track of the original values. In order to understand the error
quantitatively, we plot MAPE in Fig. 8 in red. We can see from the
MAPE plot that the error increases as it goes farther into the future.
Specifically, before 24 on the x-axis, the MAPE is at a low level,
<10%. Thereafter, the MAPE rises a regional peak 18% at 52 on
the x-axis. Subsequently, the MAPE declines a bit to 16% and
maintains the value till 550 on the x-axis, the point from which the
error increases sharply. Given the experimental results, we can
infer that the model is suitable for forecasting in the day-ahead
bidding task and day-ahead electricity scheduling.

4.4 Model retraining interval

For any data-driven model, it is necessary to keep the model up to
date by retraining the model using fresh data. In particular, power
consumption patterns are not fixed and the trained model would
become obsolete over time; a fact which would result in lower
forecasting accuracy. Thus, the timing for retraining is a crucial
tuning parameter in real-world operation. Retraining is desired
when degradation in prediction is noticed. This subsection is to
empirically investigate appropriate model retraining interval and to
find how long a trained PowerNet model can be used with
acceptable accuracy. It also provides us with insight on how often
PowerNet should be trained to capture the new power demand
characteristics evolved with time.

This experiment is different from the previous experiment in
Section 4.3. The experiment in Section 4.3 focuses on exploring
the accuracy fluctuation caused by different lengths of forecasting
periods and it forecasts the power demand for a period at once
based on the data on hand at that moment. Differently, the
experiment in this section uses actual data, which eliminates the
error accumulation caused by forecasting using estimated feature
values. We use the model trained in Section 4.3 and test it using the
actual data in August.

The results are shown in Fig. 7 using the blue line. Generally,
the prediction based on actual values (the blue line) is better than
the prediction based on predicted values (the red line), which is
reasonable and in line with the expectation. From the MAPE plot
in Fig. 8, the same conclusion can be drawn. We can see that both
‘prediction (use ground-truth)’ and ‘prediction (use estimation)’
show almost same errors till 15 h on the x-axis. The latter digresses
significantly afterwards. The ‘prediction (use ground-truth)’, i.e.
the blue line maintains itself around 10% MAPE at 36 h and
around 11% till 550 on the x-axis. At the very end, it reaches the
largest error of around 13%. In practice, depending on the error
tolerance of the prediction task, we can adjust our model by re-
training the model with new data. For example, we can re-train the
model every 36 h to capture the new characteristics of the data
generated during the 36 h. Generally, the model can maintain an
MAPE of around 11% for more than 3 weeks in the future
prediction horizon.

5 PowerNet for anomaly detection
Anomaly detection is to identify patterns in data that do not
conform to the defined normal behaviour [24]. Anomaly detection
in smart grids focuses on the non-technical loss which is not caused
by the intrinsic loss (technical loss, e.g. transmission loss) in a
power system. Electricity theft is the most focused non-technical
loss that causes anomalies. Data-driven anomaly detection can be
done by modelling the normal consumption behaviour and defining
a normal region. Any consumption that does not fall within the
normal region is considered as an anomaly and it potentially
indicates a problem in the smart grid. The forecasting results from
PowerNet can be interpreted differently depending on the tasks,
e.g. the power demand at some time in the future or the expected
normal consumption at that time. In the latter sense, PowerNet can
be used to define the normal consumption behaviour based on
which further anomaly detection can be carried out.

Normally, for a consumer u, the reported consumption Mr
should be roughly equal to the actual consumption Mu. However,
an attacker may be able to manipulate Mr aiming at reducing the
electricity bill by making Mr < Mu. We conduct a preliminary
experiment to understand the performance of PowerNet to capture
electricity theft. We here consider ‘forecasting using predicted
values’ approach and evaluate the deviation from the prediction as
the criteria for detection. In order to prevent manipulated
consumption data from affecting the prediction, this is a reasonable
design.

We artificially reduce the power consumption by different theft
percentages in the test data to simulate different electricity theft
scenarios. Fig. 9 shows the forecasting MAPE results under
different theft percentages and Fig. 10 magnifies the first 30% of
the x-axis in Fig. 9.

We can see from the magnified view (Fig. 10) that when theft
percentage is small, the MAPE grows linearly as the percentage of

Fig. 7  Forecasting results using predicted and actual values
 

Fig. 8  Forecasting MAPE using predicted and actual values
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theft grows. However, from the experimental results in Fig. 9, we
can see that the overall MAPE increases in an exponential manner.
It means that the more the user steals, the larger the deviation
between the predicted value Mp and the reported value Mr is. In
other words, the more the user steals, the more obvious the
deviation is. A reasonable threshold that would trigger an alarm
can be inferred from the historical data as well as the tolerance of
theft.

Anomaly detection can be deployed in both substation layer and
individual consumer layer. We discuss how PowerNet can be
utilised to detect such anomalies in both layers.

Anomaly detection in substation layer: At the substation level,
there is a master meter which is a meter to measure the aggregated
consumption of the whole supply region. The reading of master
meter is denoted as Ms. So, we have Ms = ∑i = 1

Nc Mu
i + TL, where

Nc is the number of consumers in the supply region and TL is the
technical loss. The substation can observe Mr

i which is the reported
consumption of consumer i. We can obtain TL through
TL = Ms − ∑i = 1

Nc Mu
i . In normal case where Mr

i = Mu
i , we have

TL = Ms − ∑i = 1
Nc Mr

i. In order to detect the anomaly where
Mr

i ≠ Mu
i , we use PowerNet to model the indirectly observed TLo.

In the attack case where Mr
i ≠ Mu

i , a deviation would be observed
between the predicted TLp and the observed TLo. Hence, PowerNet
is able to detect the anomaly under a substation supply region by
constructing one model for one substation.

Anomaly detection in individual consumer layer: Anomaly
detection at substation level can detect the anomaly but cannot
pinpoint which consumer is suspicious. At the individual consumer
level, with the help of the PowerNet, we can build a model for the
consumer u based on his/her historical Mu. Once the attacker
reduces his/her Mr to make Mr ≠ Mu, we shall notice that there is a
deviation between his/her Mr and Mp which is predicted by
PowerNet. In this sense, anomaly detection at individual consumer
layer can work as a complementary to anomaly detection in
substation layer, which is able to locate the consumer who is
suspiciously reporting false readings.

6 Related work
The existing works on power demand forecasting can be generally
classified into two categories – classic statistical models and
modern machine learning algorithms.

In terms of statistical models, time-series models have been
used to capture the time-series characteristics of power demand,
e.g. ARMA [25, 26], ARIMA [27–29]. Beside time-series models,
Hong et al. [30] adopt multiple linear regression to model the
hourly energy demand using seasonality (regarding year, week and
day) and temperature information. Their results indicate that
complex featuring of the same information results in a more
accurate forecasting. Fan and Hyndman [31] use the semi-
parametric additive model to explore the non-linear relationship
between energy usage data and variables, i.e. calendar variables,
consumption observations and temperatures in the short-term time
period. Their model demonstrates sensitivity towards the
temperature. In addition, conditional kernel density estimation is
applied to the power demand forecasting area which performs well
on the data with strong seasonality [32]. However, these models
have limitations in incorporating heterogeneous features in a
unified way. Differently, the design of PowerNet creates a neural
network that can encode sequential features and single-value
features simultaneously.

Regarding the machine-learning models, there are three models
widely used for demand forecasting tasks, viz., DT [2, 33, 34],
SVM [3, 35–37] and artificial neural network (ANN) [38–41]. DT
is used to predict building energy demand levels [34] and analyse
the electricity load level based on hourly observations of the
electricity load and weather [33]. Later, Bansal et al. [2] use the
boosted DT to model and forecast energy consumption so as to
create personalised electricity plans for residential consumers
based on the usage history. There are also works using SVR, the
regression based on SVM and so on, to forecast power
consumption in combination with other techniques such as fuzzy-
rough feature selection [37], particle swarm optimisation
algorithms [36] and chaotic artificial bee colony algorithm [35].
The SVR-based prediction has demonstrated good prediction
results [3]. For the third model ANN, Gajowniczek and Zabkowski
choose ANN because they believe that time-series analysis is not
suitable for their work since they observe high volatility in the data
[38]. Zufferey et al. [39] apply time delay neural network and find
out that the individual consumer's consumption is harder to predict
than an aggregation of multiple consumers. Recently, researchers
take the advantage of LSTM to forecast building energy load using
historical consumption data [40]. Historical load data and ambient
temperature are utilised to build a prediction model based on ANN
in [41]. Cheng et al. [42] further manage to feed the concatenation
of historical data and influence features as a sequential input to the
LSTM network. Since they only use the LSTM network, all data
are treated as sequential data. Short-term demand forecasting using
LSTM network based on historical load data and weather
information has been proposed in [43]. In this paper, historical data
are input to the LSTM layer and output of the LSTM layer is
combined with weather data which is the output of a fully
connected neural network. A similar study is performed in [44]
where categorical features like time of the day, holiday flag and so
on, are incorporated in addition to the weather data to enhance
prediction accuracy for short-term load demand using LSTM
network. Despite the extensive research carried out in power
demand forecasting area, to the best of our knowledge, there is no
such neural network architecture that takes consideration of
heterogeneous features to the extent the PowerNet does.

Another stem of related work is the anomaly detection in smart
grids for non-technical loss such as electricity theft. Bandim et al.
[45] introduced an observer meter to observe the meter
consumption of a set of users and further identified the tampered
meter using the deterministic and statistical approach. Later,
Krishna et al. [46] discussed the detection capability based on such
extra meters on different attacks. Other than these, linear regression
[47], cluster outlier [48, 49] and SVM [50, 51] are also used to
detect the anomaly in smart girds. Biswas et al. [52] performed
correlation analysis to pinpoint electricity thieves among a large
pool of domestic consumers. Furthermore, Mashima and Cárdenas
[26] evaluated the effectiveness of several anomaly detection
models including the average detector, ARMA-GLR, and non-
parametric statistics and local outlier factor. In this work, we

Fig. 9  MAPE predictions over different electricity theft scenarios
characterised by the theft percentage from 10 to 90%

 

Fig. 10  MAPE predictions over different electricity theft scenarios
characterised by the theft percentage from 10 to 30%
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discuss how PowerNet can be used in multiple anomaly detection
layers.

7 Conclusion
In this paper, we propose PowerNet, a power demand forecasting
model based on modern RNN and MLP network, which is capable
of incorporating heterogeneous influencing factors in a unified
way. It demonstrates improvement in prediction accuracy
compared to four state-of-the-art approaches, viz., GBT, SVR, RF
and GRU. Further, evaluation under different settings with the real-
world dataset is carried out to better understand the model
capability and crucial operational considerations in practice,
mainly the length of the forecasting period and the model
retraining interval. Based on our evaluation results, PowerNet
shows advantages in terms of prediction accuracy when the
prediction is made for individual and aggregated consumption of a
group of households which is often challenging in practice. Finally,
we briefly discuss the usability of PowerNet in anomaly detection
task in the smart metering processes.

Our potential future work includes the evaluation with other
smart meter datasets, such as datasets of commercial/industrial
electricity consumers. Moreover, development and evaluation of
anomaly detection scheme based on PowerNet under more
sophisticated attacker models is also an interesting research
direction.
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